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Abstract

This essay will look into the field of fluid simulation. More specifically how highly viscous fluids, such
as honey, can be simulated in computer graphics. Two technical papers will be presented and compared.
First An Implicit Viscosity Formulation for SPH Fluids by Peer et al. [1] who proposes a particle
based Lagrangian method. The second paper is Variational Stokes: A Unified Pressure-Viscosity
Solver for Accurate Viscous Liquids by Larionov et al. [2], who instead proposes a grid based Eulerian
approach. The essay ends with a discussion of which approach is the best way forward.

I. Introduction

Honey, mud, dough, toothpaste, tar,
molasses. The examples of highly
viscous liquids are numerous. While

one could easily think that these materials
can be simulated by a regular fluid simula-
tion, with some tweaks to the viscosity term,
that is not entirely true. To achieve the char-
acteristic effects of these viscous liquids, such
as buckling, meandering and rope-like coil-
ing, new formulations has to be made from
the Navier-Stokes equations. Two such novel
formulations are presented in this essay. First
an implicit formulation based on Smoothed
Particle Hydrodynamics (SPH) proposed by
Peer et al. [1] and then an implicit variational
formulation of the Stokes problem in a grid
based system proposed by Larianov et al. [2].

II. A particle based formulation

All modern particle based fluid simulations
are built upon the SPH approach, in which
viscosity is an important stability aspect. The
particle based formulation can be either ex-
plicit (i.e. forces are applied explicitly) or
implicit (i.e. a linear system for unknown
velocities at the next timestep needs to be
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solved). When simulating highly viscous flu-
ids an explicit approach require a very small
timestep, which then is prone to overshoot-
ing, while an implicit formulation needs to
solve a complex linear system. An implicit
approach works with a significantly larger
timestep however and therefore overshooting
cannot occur and it is thus often preferred
over an explicit formulations.

The implicit formulation proposed by Peer
et al. [1] is more efficient and can handle a
wider range of viscosities than previous meth-
ods. In highly viscous fluids the incompress-
ibility and viscosity constraints can interfere.
Previous methods solve this by performing
two pressure projection steps. The main con-
tribution of the proposed method is to reduce
this to only one pressure projection step by
addressing the interference of pressure and
viscosity computation. While previous im-
plicit methods assume that the input velocity
field is divergence-free the proposed formu-
lation instead reconstructs the velocity field
from a target velocity gradient. This gradi-
ent encodes a desired shear rate damping
and preserves the velocity divergence that
is introduced by the SPH pressure solver to
counteract density errors. The target gradient
ensures that pressure and viscosity computa-
tions do not interfere and therefore only one
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pressure step is required. This is shown to
be especially relevant for high viscosities and
large timesteps.

Peer et al. does not employ a classic force-
based formulation with standard physical
parameters to build the linear system, in-
stead they formulate a set of constraints that
should be fulfilled at the next timestep. This
is known as Position Based Dynamics (PBD).
As in most PBD formulations Peer et al. make
use of a non-standard parameter, here called
the shear viscosity parameter, and use it in the
range between zero and one.

The method solely relies on the plain
Navier-Stokes equation for fluids. It does
not account any rigid motion or elasticity.

i. Velocity gradient

Viscosity forces are usually computed from
the divergence of a viscous stress tensor τ,
which itself is computed from the strain-rate
tensor D which in turn is the symmetric part
of the velocity gradient ∇v. The viscosity
forces always aim to minimize the entries of
the strain-rate tensor. The different aspects
in computing these forces makes this explicit
formulation rather involved when used on
highly viscous fluids.

Instead a novel implicit approach is used
where a momentum-preserving velocity is
computed based on a desired velocity gra-
dient at the next timestep. This does not only
predict a velocity gradient that obtains highly
viscous materials but it also preserves the cor-
rections of density deviations introduced by
the pressure solver. Velocity changes due to
pressure forces are computed first, then the
viscosity solver computes velocities that ac-
count for viscosity, but do not influence the
rate of volume change. Because the pressure
and viscosity solvers do not interfere we do
not need the final pressure solve (which is
otherwise used to perturb the result of the
viscosity solver.)

In the formulation proposed by Peer et al.
the velocity gradient itself is decomposed into
three components: the spin tensor R, the
shear-rate tensor S and the expansion-rate
tensor V.

∇v =
1
2
(∇v− (∇v)T)︸ ︷︷ ︸

R

+
1
3
(∇ · v)I︸ ︷︷ ︸

V

+ (
1
2
(∇v + (∇v)T)− 1

3
(∇ · v)I)︸ ︷︷ ︸

S

(1)

R describes the vorticity (i.e. the rate of
rotation of a particle), V describes the density
change at a particle (e.g. can be used to realize
bulk viscosity) and S describes the rate of
shear strain at a particle. The divergence of
the velocity field is then computed as the trace
of the velocity gradient.

When predicting the desired velocity gra-
dient Peer et al. distinguish two different
cases; when the particle density is above rest
density and when it is below. When the par-
ticle is above rest density the key aspects is
to preserve the expansion-rate tensor V and
to control the shear rate with a non-physical
parameter for shear viscosity (0 ≤ ξ ≤ 1).

∇τv = R + V + ξS (2)

When the particle density is below the rest
density we have two cases. If the divergence
of the velocity field is negative we have the
same gradient as before, but if the divergence
is positive then a maximum bulk viscosity
is introduced by eliminating V from the pre-
dicted gradient (Eq. 2). This addresses a
negative pressure issue that is normally not
handled in SPH approaches. This formula-
tion aims at stopping adjacent particles from
moving away from each other and thus re-
duces the artificial volume gain that other-
wise would occur.

Finally a first-order Taylor approximation
is used to reconstruct the final velocities from
the target gradient ∇τvi resulting in a lin-
ear system. The average of the gradient of
two adjacent particles are used to guaran-
tee momentum-preserving velocity changes
at the particles. This also accounts for the dif-
fusion of the rotation rate that is particularly
present in highly viscous fluids.

i.1 Boundary handling

The boundary handling is generally handled
during the pressure solve but Peer et al. pro-
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poses two further conditions to be handled
during the viscosity solve. The first is sticky
boundaries, motivated by how honey sticks
to solid surfaces, which dampen the shear
rates between fluid and solid particles. The
second is separating boundaries which is the
opposite, the fluid can flow freely, but not
into the boundary.

ii. Discussion

The proposed formulation deviates from a
physical model in two ways. It is parame-
terized with a non-physical constant ξ and
the vorticity diffusion is not encoded in the
formulation of the target gradient. The pa-
rameter ξ is a non-standard parameter and
does not correspond to dynamic or kinematic
viscosity. Nevertheless, ξ is physically moti-
vated. It governs the damping of the shear
rate in the fluid, thus it governs viscosity.

The formulation has multiple approxima-
tions, such as the first-order Taylor approxi-
mation, which result in numerical errors in
spin, divergence, target gradient and momen-
tum. However, the errors are small and the
experiments provided by Peer et al. show that
these errors are negligible.

Non-destructive velocity reconstruction (i.e.
zero viscosity) works in the proposed solver
but due to the smoothing of the velocity field
in the reconstruction process this approach
should not be used for low viscous fluids
such as water. It also has a problem with
rigid-like objects that require many solver it-
erations. For such materials this approach
is significantly less efficient than viscoelastic
solvers.

The solution is fully parallelized and imple-
mented in Houdini. It can easily be added to
a SPH solver as a post-processing step. The
computation time of the viscous solver scales
with the viscosity parameter ξ. With multiple
examples Peer et al. demonstrate that they in-
deed can simulate a wide range of viscosities
(see Figure 1), even water and rigid-like mate-
rials (even if this method is not the best can-
didate for those two). The proposed viscosity
solver is particular appropriate for multiple
phases (i.e. having materials with a range of
values of ξ).

One of the biggest drawbacks of the paper

Figure 1: Different viscosities. The left is simulated
with ξ = 0.8 while the highly viscous setting
to the right is simulated with ξ = 0.2. The
computation time per frame was 11s for the
left and 37s for the right image.

is that no performance comparison has been
performed whatsoever and that no mapping
between the viscosity constant ξ to dynamic
viscosity µ have been found or even tried..

A given example of future work is that
the method heavily damps shear rates which
means that the particle movement is heavily
restricted. This leads to a visible pattern of the
initial sampling. To improve this a Poisson
disc sampling could investigated and maybe
used instead.

III. A grid based formulation

In contrast to the previous Lagrangian ap-
proach Larianov et al. [2] has developed a
novel Eulerian method where an unsteady
Stokes solver can be used to simulate coupled
viscous and pressure forces for grid-based liq-
uid. Whereas Peer et al. and most other mod-
ern fluid simulators treat viscosity and pres-
sure in separate solver stages, which reduces
accuracy and yields incorrect free surface be-
havior, the implicit variational formulation
of the Stokes problem proposed by Larianov
et al. leads to a symmetric positive definite
linear system. This in turn gives properly cou-
pled forces, provides unconditional stability
and treats difficult boundary conditions natu-
rally through simple volume weights. Surface
tension and moving solid boundaries are also
easily incorporated.

The key contribution of the paper is that
the standard Eulerian viscosity and pressure
steps has been replaced by a novel unsteady
Stokes step that reunites these forces and ac-
curately recovers the missing effects of cou-
pling.

A dominant source of error introduced
by splitting is an improper treatment of the
liquid’s free surface. The correct bound-
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ary requires the interface to be traction-free,
t = σn = 0 where t is the surface traction, σ is
the total fluid stress tensor and n is the surface
normal. However, this condition inherently
requires tight pressure-viscosity coupling be-
cause σ is a sum of pressure and viscous shear
stresses.

Unlike a steady-state Stokes solver, which
yields indefinite linear systems, an unsteady
(i.e. time dependent) solver can be used to
yield a symmetric positive definite system.
By discretizing a carefully chosen variational
form they can also allow the free surface con-
ditions to be enforced easily and implicitly as
natural boundary conditions.

i. Fluid equations

The foundation for the formulation by Lar-
ionov et al. is the incompressible Navier-
Stokes equations. From them they apply oper-
ator splitting and discretize in time, yielding
a two step scheme. An intermediate velocity
is arrived at first by solving advection and
external forces.

They then simultaneously integrate pres-
sure and viscous forces using backward Euler
by solving

un+1 − u∗

∆t
=

1
ρ
(−∇p +∇ · τ), (3)

∇ · un+1 = 0, (4)

τ = µ(∇un+1 + (∇un+1)
T), (5)

where ρ is density, u is velocity, p is pres-
sure, τ is the symmetric deviatoric stress ten-
sor, µ is the dynamic viscosity coefficient and
t is time. These are the equations for an im-
plicit unsteady Stokes flow allowing for spa-
tially varying viscosity. The main contribu-
tion by Larionov et al. is a solver for this
PDE.

ii. Boundary conditions

For an Eulerian approach it is difficult to de-
rive appropriate discrete boundary conditions
for non-grid aligned boundaries, especially
for free surfaces. Larionov et al. solve this by
using a variational framework that handles
irregular geometry through natural boundary
conditions.

There are two separate cases to be handled,
one for free surfaces and one for solid sur-
faces. For the free surface case an integration
step is performed over the liquid (i.e. non-
air region). With the new formulation this is
now handled automatically by the PDE, be-
cause they now have the coupling between
pressures and viscous stresses that were ab-
sent in previous methods. For the solid case
the integration is instead performed over the
fluid (i.e. non-solid region).

Unfortunately both cases cannot be en-
forces simultaneously in the continuous case.
However, by discretizing the integrals, follow-
ing a variational finite difference framework,
they can be combined. A FEM could be used
instead but Larionov et al. choose the first
alternative because it is simple, convergent
and does not require stabilization.

By combining the two formulations at the
discrete level Larionov et al. exploit the natu-
ral conditions for both boundary types simul-
taneously. The resulting sparse, symmetric
indefinite system is then transformed into a
symmetric positive-definite (SPD) system by
finding the Schur complement and eliminat-
ing velocity, instead of stress which is the
common way for steady Stokes.

A stress reduction and a null space elimi-
nation are also performed before arriving at
the final boundary conditions that are used
in the simulations.

iii. Discussion

The proposed method can be used as a re-
placement for the viscosity and pressure steps
in standard fluid simulators. The method was
integrated into Houdini and Larionov et al.
have released a plug-in for Houdini 16.

Through experiments they show that the
characteristic rope-like coiling is recovered
(see Figure 2) and that the method preserves
a higher degree of detail in viscous liquid
surfaces than previous grid based methods,
while still maintaining support for features
such as moving boundaries and surface ten-
sion. They also prove that the method is con-
vergent through grid refinement studies on
analytical problems in two dimensions.

In their results Larionov et al. have mul-
tiple other examples of different simulation
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Figure 2: A simulation of rope-like coiling.

environments that their solution can handle,
and they have also verified that the solver
computes exact solutions, for time-dependent
Stokes problems with linear solutions on ir-
regular (i.e. non-grid-aligned) domains at
least.

The solution is parallelized inside Houdini
and a comparison of the computational cost
has also been performed. In general they
found that their solution was 1.6x to 3.4x
times more expensive than Houdini’s decou-
pled approach, which in turn is more expen-
sive than per-component Laplacian viscosity.
The increase is not surprising giving the much
larger linear system.

However, even though the proposed
method has a higher visual and physical fi-
delity, the increased cost indicates that this
solver only should be used when realistic coil-
ing effects, sharper surface details or greater
physical fidelity is needed. Otherwise a de-
coupled variational viscosity solution or a
Laplacian form should be used instead.

IV. Summary

This essay has become somewhat of an La-
grangian vs. Eulerian comparison. Larionov
et al. [2] actually refers to Peer et al. [1] in
their background chapter. According to Lari-
onov et al. non of the existing Lagrangian
(particle based) approaches "present quan-
titative evidence of accuracy" and because
these methods so far leads to indefinite linear
systems, in contrast to the positive definite
system achieved by Larionov et al., the per-
formance is much higher for Eulerian (grid
based) approaches and Larionov et al. make
the conclusion that this is why grid based
methods are dominant in the industry.

Peer et al. on the other hand say that Eu-

lerian methods require special treatment for
free surface to allow for rotational fluid move-
ments, and that they only for divergence-free
velocity fields. Which was true when the pa-
per was published but it is exactly these areas
that Larionov et al. has improved upon.

Overall I would say that the grid based
approaches has the upper hand, both in accu-
racy and performance, but it will be interest-
ing to see what the next step will be for both
of these approaches regarding highly viscous
fluids.
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