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Abstract

This report describes the physical concept of fluids as well as a mathematical model for fluids gov-
erned by the Navier-Stokes equations. The Smoothed Particle Hydrodynamics method (SPH) for
simulating fluids is described, and implementation details of the method are explained. Numerical
integration methods such as Euler and Leap-Frog integration are discussed.

The presented result is a program with support for real-time simulation and rendering of three-
dimensional fluids. The properties of the fluid can be adjusted through a graphical interface, and
the fluid particles can be rendered either as spheres or as an approximate fluid surface. The program
is written in C++ with the SPH simulation implemented in OpenCL and rendering implemented
in OpenGL.
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Chapter 1

Introduction

1.1 Background
Simulating fluids, e.g. water, with computer graphics has been done with many different tech-
niques in different contexts. Advanced techniques can produce very realistic looking fluids. This
comes at a great cost of performance, and may not be possible in high-performance applications
such as video games.

As technology and computing resources have advanced, some of the different approaches that
have surfaced have become more common than others. One such approach is Smoothed Particle
Hydrodynamics (SPH), and an implementation of this method is described in this report.

1.2 Aim
The aim of this project is to simulate water with high performance by using the SPH approach
with calculations done on the Graphics Processing Unit (GPU). High performance in this context
is to simulate a large number of particles with a high frame rate. A good enough frame rate in
real-time for this project is 30 frames per second.

First an implementation of the method will be done in Matlab. When reasonable understanding
of the method have been found the equations will be implemented in C++ with rendering on the
GPU with OpenGL. The next step is to implement the equations in OpenCL in order to do the
calculations on the GPU as well. The final step will be to render a surface of the water, have the
particles integrate with a heightmap terrain and change parameters with a Graphic User Interface
(GUI). If there is time an interaction with other objects will be implemented as well.
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Chapter 2

Fluid physics

Simulation of a fluid’s movement involves modelling several of its physical attributes such as vis-
cosity, surface tension, pressure and incompressibility. A realistic enough behaviour means to be
indistinguishable from that of an actual fluid.

To model physical attributes, one can make use of the Euler equations for fluid dynamics or the
Navier-Stokes equations, the former being the simpler of the two.

2.1 The Navier-Stokes equations
The Navier-Stokes equations were put together in the 1800’s by applying Newton’s second law to
fluid dynamics, and are fundamental in the modelling and analysis of fluids and fluid-like phenom-
ena.

A well-known formulation is the Eulerian approach, which is a grid-based method. The equations
describe the evolution of a set of fluid properties over time; the velocity field v, the density field
ρ and the pressure field p. There are many formulations of the Navier-Stokes equations depend-
ing on context and applied area, and the following equations are simplified for incompressible fluids.

The first equation (2.1) ensures mass conservation in the fluid:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

The second equation (2.2), where g is an external force field (e.g. gravity), ensures conservation
of momentum in the fluid:

ρ(∂v
∂t

+ v · ∇v) = −∇p+ ρg +∇2v (2.2)

Since the increasing availability to solve equations numerically started taking form, different meth-
ods to implement these equations as a foundation for fluid simulation have surfaced. Particle
systems were introduced as a technique in 1983 by Reeves [8], and since then both particle-based
and grid-based approaches have been used.
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2.2 Smoothed Particle Hydrodynamics
Smoothed Particle Hydrodynamics (SPH) is a method that was initially developed for astrophysi-
cal simulations, but Müeller, Charypar & Gross [7] describe how the method can be applied to fluid
simulation. SPH is a mesh-free Lagrangian method that simulates a fluid as a set of particles. The
method is essentially an interpolation method, where a fluid property can be calculated anywhere
in space by smoothing surrounding particles’ properties.

The particles have a spatial distance, known as the smoothing length (R), which is a measure
of how far a particle’s properties can affect other particles. This means that when a property of
a particle is calculated, only particles closer in proximity than the smoothing length contribute
to it, as shown in Figure 2.1. Furthermore the smoothing kernels 2.2.1 weigh the contributions
depending on the distance between the particles to be stronger for smaller distances.

R

Figure 2.1: A property of the particle in the middle is calculated based on the green particles, the
blue particles lie outside the radius of the smoothing kernel.

An advantage of the SPH approach is that the Navier-Stokes equations presented earlier can be
greatly simplified. Since the number of particles is constant, and each particle has equal mass, the
model inherently guarantees mass conservation, thus eliminiating (2.1). Additionally, the convec-
tion term v·∇v in (2.2) can be neglected according to Müeller et al.

The SPH method simplifies the Navier-Stokes equations into 3 forces acting on each particle; Pres-
sure force, Viscosity force and External force. Since The Navier-Stokes equations are general for
fluids it does not include consideration of surface tension forces. When simulating water this is an
important factor for realistic behaviour and therefore a model for this is implemented beyond the
Navier-Stokes equations.

The equation (2.3) is the general equation to evaluate any quantity A at position r,

AS(r) =
∑

j

(mj
Aj

ρj
W (r − rj , h)) (2.3)

where mj is the mass of particle j, Aj is the value of the quantity A for particle j and ρj is its
density. W is a smoothing kernel (see chapter 2.2.1) that weighs the contribution from particle j
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depending on its distance to the particle at position r.

This general equation is the basis of all calculations of the particles’ properties. Müeller et al. [7]
describe how the equation can be modified to account for physical stability for the different fluid
properties.

2.2.1 Smoothing kernels
Given a scalar distance between two particles and the smoothing length, a kernel determines
the weight of the contribution from the particle. Depending on the quantity that is calculated,
different properties are desired of the kernel. To accomplish correct calculations for the properties,
the different specialized kernels proposed by Müeller et al. [7] are used.

2.2.2 Boundary conditions for smoothed particles
A physically based way of modelling boundaries is to have the boundaries contribute to the density
of nearby particles as well as directly applying a boundary pressure force. A side-effect of the
density contribution is that the effect of the boundary will propagate further from the boundary
itself, since particles with high density apply higher pressure forces on nearby particles.

2.2.3 Parameters
The Navier-Stokes equations and the surface tension calculations include several parameters that
manipulate the properties of the fluid. How each of them interacts and what kind of effect they
have on the fluid is described here. Values given to the parameters need to be carefully considered
and to study their effect on the fluid is necessary to give a simulated fluid of desired properties. The
equations that contain these parameters are not included in this report and are general parameters
for the SPH method [7].

• Gas constant
This parameter affects the magnitude of the pressure forces in a way that a larger value results
in stronger pressure forces. The fluid gets a more gas-like appearance when the magnitude of
the pressure forces increases since the particles will not stay close together. A larger pressure
force makes the particles keep a distance between each other and the volume of the particle
system increases. When simulating water a low value, close to zero, is chosen for the gas
constant. In conclusion this parameter will decide how gas-like the particle system behaves.

• Viscosity constant
A fluid can be more or less viscous, which means how inclined particles are to be affected
by the movement of particles close by. Increasing the viscosity constant makes the fluid
look thicker and decreasing it gives the impression of a lighter fluid with less tendency of
sticking together. Water is not thick and viscosity forces are not important for a realistic
water simulation, hence a small value or zero is given to the viscosity constant.

• Surface tension constant
A factor which the tension force is multiplied by and gives a linear increment in the magnitude
of tension force.

• Threshold for surface tension
Needed because when evaluating tension forces numerical problems can appear if certain
properties in the equations are close to zero.
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• Rest density
Rest density works as an offset for the pressure field calculations. Mathematically it won’t
affect the pressure forces since they only depend on the gradients of the pressure field but
with SPH smoothing kernels the offset will matter and makes the simulation numerically
more stable.
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Chapter 3

Fluid simulation

3.1 Numerical methods
3.1.1 Euler integration
Euler integration is a first-order integration method. The method involves updating the simulation
states according to (3.1), where xt is the state of the system at time instance t. The amount of
change in the state is determined by its derivative, xt, which is calculated based on the mathe-
matical model of the system and its current state.

xt+1 = xt + xt∆t (3.1)

The greatest advantage of the method is that only one state calculation has to be done for each
timestep, i.e. to complete a true timestep only one state calculation has to be done. Its flaw is
that the method has a first-order error, which means that the simulation needs a small timestep
to ensure stability in the system.

3.1.2 Leapfrog integration
Leapfrog is an integration method that improves the simulation error to a second-order error,
while still only needing one state calculation for each timestep[10]. The method, as the name
implies, updates positions at whole timesteps t = [0, 1, 2...] and velocities at non-integer timesteps
t = [1/2, 3/2, 5/2...].

3.2 Simulation
3.2.1 Spatial partitioning
The SPH method involves calculating the physical properties of each particle as a combination of
the properties of the ones surrounding it. The smoothing kernels have a hard radius, outside of
which the contribution to the property is zero. Therefore, each particle only depends on particles
in its close proximity.

A naïve implementation of the property calculation would simply calculate a particle’s property
using the contribution from all particles in the simulation. Since all particles will have to access
all other particles the algorithm has a complexity of O(n2), where n is the number of particles.
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Improvements to the naïve property calculation can be made by partitioning the particles spatially.
There are many ways of spatial partitioning; binary space partitioning, k-d trees and octrees, but
a method well-suited for SPH is a uniform grid.

Uniform grid

The simulation volume is divided uniformly into a three-dimensional grid. Each particle gets
placed into a grid cell depending on its own position[2](slides 11-13). The cell size is as the radius
of the smoothing kernel. This means that each particle only has to access all particles in its own
and neighbouring grid cells to calculate a property, as shown in Figure 3.1. The complexity of the
property calculation is now O(n ∗m) [7](ch. 5), where n is the number of particles and m is the
number of grid cells.

R
R

Figure 3.1: Radius and neighbouring grid cells for a given particle.

In 3.1 the blue and green particles are searched, resulting in identifying the green particles as
contributing to its properties. The grid partitioning discards the red particles, greatly reducing
the amount of particles needed to iterate through.

3.2.2 Boundary conditions
Constraint-based boundaries

Heightmap boundaries

The density- and force-based approach described in 2.2.2 has been implemented for simple geom-
etry defined by a heightmap. A heightmap is 3D geometry defined by a 2D image, where each
pixel’s value represents the height of the geometry at that position. The two-dimensional nature
of the heightmap implies that there are no holes in the geometry, i.e. no part of the geometry has
geometry above or below it. A visualization of the heightmap is shown in Figure 3.2.

The implementation presumes that particles are affected by the geometrical boundaries only if they
are within a set distance of its surface. The magnitude of the density and pressure force contri-
butions are determined in a similar fashion to the smoothing kernels in 2.2, where the magnitude
increases closer to the heightmap and approaches zero at a cutoff distance.

The density contribution from the heightmap on the particle is dependent on the distance d above
the surface. The boundary pressure force Fp is applied in the direction of the heightmap’s normal
vector n at the point right below the particle.
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Figure 3.2: Heightmap

3.2.3 Multi-core simulation
The previously described SPH algorithm of simulating fluid can be divided into the following steps:

• Generate uniform partitioning grid

• Calculate particle densities

• Calculate particle forces

• Integrate particle states

The generation of the partitioning grid can be parallelized if special care is taken to ensure that
no processing threads write to the same piece of memory at the same time. This is achieved
through atomic write-locks to shared variables. All of the other steps can be executed in parallel
internally, since the calculation for each particle only modifies the state of itself. This shows that
the algorithm is well suited for a multi-core architecture. Harada, Koshizuka and Kawaguchi [5]
describe ways of how to implement the simulation on GPUs.

3.3 Rendering
To be able to present the simulation a rendering of the particles has to be made. The particles can
either be rendered individually or as a surface mesh, which is required for a more realistic look.
There are many different methods of how to render particles as a water surface. This chapter
describes and compares two of the most popular methods, marching cubes and point splatting.

The rendering was done on the GPU using OpenGL and GLSL coding languages.

3.3.1 Direct particle rendering
The easiest way to render particles in OpenGL are as glPoints. That way the particles will be
rendered as squares with a user-defined number of pixels. A front-faced circle can be conceived
from the square by discarding all pixels outside of a set radius.

The particles can also get a geometry by instancing, when the geometry is initialized by the user and
then copied to all particles, or by generating one during run-time. If the geometry is generated
during run-time either a tesselation shader or a geometry shader can be used. The tesselation
shader is available with OpenGL 4.0 and above and is performance-wise the best way to generate
a geometry [1]. The geometry shader has a memory limit that may limit the simulations and is
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better used to change the geometry during run-time. This project has rendered spheres as point
sprites and by using a tesselation shader.

3.3.2 Point platting vs marching cubes
To render the particles individually is good for visualization of their forces and movements but to
get the whole picture a surface rendering is required. The traditional way to do this is by forming
polygons of the particles at the surface and then divide them into a number of subsections. The
normal of the surface is thereafter extracted and an iso surface is formed with the marching cubes
method. However this is very computationally heavy and for a real-time application with ten
thousand particles and above it is not preferable [6].

Instead a version of point splatting is used for this project where only the particles visible in the
frame matters. The method is called Screen space rendering with curvature flow and is described
theoretically by Simon Green [4]. He also describes the implementation of the method in Direct3D
[3]. The first step of this method is to render the particles as spheres, either as point sprites or
generated with a tesselation shader. Then a depth texture is generated from the camera’s point
of view. The next step is to blur this texture with the curvature flow algorithm to get a smooth
surface of the depth. The surface’s normal is then extracted from the depth texture. This is done
by taking a step in x- and y-direction and forming vectors depending on the depth value in these
pixels. The normal is the cross product of the x- and y-vector. The surface is then rendered with
Phong shading with specular reflection based on Fresnel equations [4].

As a complement to the surface reflection, a thickness component is added. Additive blending is
used to extract the thickness of the water. This component is then used for the color of the mesh;
the higher the thickness, the bluer the water.

3.3.3 Refraction and caustics
Real water has different characteristics which are all more or less difficult to simulate. Examples
of characteristics are shadows, refraction and caustics. Shadows can be added by using shadow
mapping, which is to render a depth texture from the lights point of view and then use this texture’s
values to determine if the pixel is shadowed or not. Equations for refraction are possible to add
but are computationally heavy to do in real-time [9]. There are different methods to implement
both refraction and caustics in OpenGL. The simplest way to add caustics is to have a texture
at the bottom of the water that reflects in the water. Implementation and simulation of all these
characteristics are still subjects of research all over the world.
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Chapter 4

Results

The theory of chapters 2 and 3 was implemented in the different steps described in 1.2. The results
of these implementations are described in this chapter.

4.1 Matlab
A basic, partial implementation of the theory was implemented in Matlab. A low but sufficient
amount of particles were simulated in two dimensions, with the SPH-based method proposed by
Müeller et al. [7], including spatial partitioning with a grid. The performance was low but with
first-hand assurance of the validity of the theory the Matlab implementation could be used as a
reference for the C++ and the OpenCL implementation. 50 particles were simulated in Matlab
with 6 frames per second, see Figure 4.1.

Figure 4.1: Particles simulated in Matlab
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4.2 C++
A fluid simulation in three dimensions was made in C++, where the equations were implemented
but not the grid system. A considerably improved performance over that of the Matlab implemen-
tation was observed, but not high enough for a polished result. Up to 500 particles were possible
to simulate with 30 frames per second. Only individual rendering was used. No difference in
performance was observed when the particles was rendered as point sprites or generated during
run-time with the tesselation shader.

4.3 OpenCL
A high-performance fluid simulation was implemented in the multi-core computing framework
OpenCL, shown in Figure 4.2. The multi-core implementation followed the reasoning in 3.2.3, and
allowed for a great increase of particles over the C++ implementation. Up to approximately 20
000 particles were simulated at good enough frame rate when rendered as individual spheres.

Figure 4.2: Particles simulated in OpenCL with depth and thickness.

4.4 Visuals
Rendering of the simulated fluid has been implemented in two different ways: as spheres and as a
free surface. A free surface means that it takes into account free particles as splashes or drops and
not just the big body of mass. The water surface rendering has been implemented as described in
section 3.3.2 with reflection and thickness components. The implementation of the curvature flow
algorithm still needs improvement for a solid surface to be rendered.
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A heightmap with textures has been implemented and added to the scene. The boundaries of the
heightmap does not affect the particles at this moment. A GUI where the user can change values
of the parameters and the color of the background has been added as well, see Figure 4.3. The
surface rendering was implemented separately from the heightmap and GUI. No performance loss
was observed separately but after everything was assembled the frame rate dropped to below 20
frames per second and no more than 6000 particles could be used.

Figure 4.3: Simulation with blurred particles and GUI
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Chapter 5

Discussion

The numerical integration method used in the implementations was Euler’s method. It would have
been better to implement the Leapfrog method (see section 3.1.2) and compare the results of the
different methods to see which yielded a more visually pleasant result.

The implementation accounted for the stability problem by capping the delta time ∆t to a maxi-
mum value. If the computer’s performance was too poor, the simulation would run at a rate slower
than real-time to ensure a small enough time step for numerical stability.

The values of the parameters used in the final results are largely unrealistic, despite working to-
gether in a way that yields realistic looking water. During a large part of the project’s development
the maximum amount of particles that was able to be rendered was very low, causing use of realistic
parameters to result in unrealistic looking water. This is because a low amount of particles is not
representative of reality. By the end result when higher amounts of particles could be rendered,
realistic values were not tested as the visuals were deemed acceptable.

Some of the characteristics of the surface rendering have not been implemented yet, such as shad-
ows, caustics and refraction. The rendering method used is for a free surface. A method for a
non-free surface could have been faster but some realism would be lost.

The performance loss noted when the different visual part were assembled could be due to the
addition of two computationally heavy algorithms, for the heightmap and the water surface re-
spectively, and may be avoided by optimizing these algorithms. The decline of maximum particles
possible is due to a memory limit set in OpenCL and could be optimized by changing this value,
rewrite how the memory is allocated or remove components for the surface rendering completely.
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Chapter 6

Conclusion

The SPH method as described in chapter 2 and 3 was well suited for the scope of this project. The
implementations of the equations in C++ and OpenCL were successful and performance boosts
were accomplished with every step. A visually pleasing result has been accomplished as well, which
means that the aim of the project has been fulfilled.

Additional work could include implementation of other integration methods, more advanced com-
ponents of the water surface, user interaction with the particles and spawning of new particles
during run-time.
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